An integrated approach for the optimal design of a dynamic system and its controller
نویسندگان
چکیده
Optimal control system design traditionally involves the adjustment of state and input variables to optimize a specified performance index. However, in practice there may exist variables, such as plant parameters, that offer extra freedom in the design of systems that can achieve even better performance. In this paper, we describe an integrated approach for dynamic system/control system design which can satisfy a variety of constraints and allows for the introduction of three additional types of variables in the optimization process. The approach we outline is based on a direct search method which can be used in conjunction with standard optimal control algorithms such as the Riccati equation for unconstrained linear systems. The method is used to generate optimal state and input trajectories for a linear massspring-damper system.
منابع مشابه
Optimal integrated passive/active design of the suspension system using iteration on the Lyapunov equations
In this paper, an iterative technique is proposed to solve linear integrated active/passive design problems. The optimality of active and passive parts leads to the nonlinear algebraic Riccati equation due to the active parameters and some associated additional Lyapunov equations due to the passive parameters. Rather than the solution of the nonlinear algebraic Riccati equation, it is proposed ...
متن کاملA class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions
In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...
متن کاملIntelligence Method for PID Controller Design in AVR System
Designing of a PID controller is a very common method for industrial process control and due to its very simple and efficient function; it is used in a wide variety of industrial applications. PID controller to reduce the steady state error and dynamic response of the system is used. PID controller design is an inevitable problem in setting the coefficients need to try a lot of trial and error,...
متن کاملAn Efficient Optimal Fractional Emotional Intelligent Controller for an AVR System in Power Systems
In this paper, a high-performance optimal fractional emotional intelligent controller for an Automatic Voltage Regulator (AVR) in power system using Cuckoo optimization algorithm (COA) is proposed. AVR is the main controller within the excitation system that preserves the terminal voltage of a synchronous generator at a specified level. The proposed control strategy is based on brain emotional ...
متن کاملOptimal Design of UPFC Output Feed Back Controller for Power System Stability Enhancement by Hybrid PSO and GSA
In this paper, the optimal design of supplementary controller parameters of a unified powerflow controller(UPFC) for damping low-frequency oscillations in a weakly connected systemis investigated. The individual design of the UPFC controller, using hybrid particle swarmoptimization and gravitational search algorithm (PSOGSA)technique under 3 loadingoperating conditions, is discussed. The effect...
متن کاملCoordinated Design of PSS and SSSC Damping Controller Considering Time Delays using Biogeography-based Optimization Algorithm
In this paper, a consistent pattern with the optimal coordinated design of PSS and SSSC controller to improve the damping of low frequency oscillations is shown. In this design, sensing and signal transmission time delays are considered as effectiveness parameters. The design problem has been considered an optimization problem and biogeography-based optimization (BBO) algorithm is used for sear...
متن کامل